54 research outputs found

    Regulatory motif discovery using a population clustering evolutionary algorithm

    Get PDF
    This paper describes a novel evolutionary algorithm for regulatory motif discovery in DNA promoter sequences. The algorithm uses data clustering to logically distribute the evolving population across the search space. Mating then takes place within local regions of the population, promoting overall solution diversity and encouraging discovery of multiple solutions. Experiments using synthetic data sets have demonstrated the algorithm's capacity to find position frequency matrix models of known regulatory motifs in relatively long promoter sequences. These experiments have also shown the algorithm's ability to maintain diversity during search and discover multiple motifs within a single population. The utility of the algorithm for discovering motifs in real biological data is demonstrated by its ability to find meaningful motifs within muscle-specific regulatory sequences

    Evolutionary Algorithms

    Full text link
    Evolutionary algorithms (EAs) are population-based metaheuristics, originally inspired by aspects of natural evolution. Modern varieties incorporate a broad mixture of search mechanisms, and tend to blend inspiration from nature with pragmatic engineering concerns; however, all EAs essentially operate by maintaining a population of potential solutions and in some way artificially 'evolving' that population over time. Particularly well-known categories of EAs include genetic algorithms (GAs), Genetic Programming (GP), and Evolution Strategies (ES). EAs have proven very successful in practical applications, particularly those requiring solutions to combinatorial problems. EAs are highly flexible and can be configured to address any optimization task, without the requirements for reformulation and/or simplification that would be needed for other techniques. However, this flexibility goes hand in hand with a cost: the tailoring of an EA's configuration and parameters, so as to provide robust performance for a given class of tasks, is often a complex and time-consuming process. This tailoring process is one of the many ongoing research areas associated with EAs.Comment: To appear in R. Marti, P. Pardalos, and M. Resende, eds., Handbook of Heuristics, Springe

    IoTDevID: A Behavior-Based Device Identification Method for the IoT

    Full text link
    Device identification is one way to secure a network of IoT devices, whereby devices identified as suspicious can subsequently be isolated from a network. In this study, we present a machine learning-based method, IoTDevID, that recognizes devices through characteristics of their network packets. As a result of using a rigorous feature analysis and selection process, our study offers a generalizable and realistic approach to modelling device behavior, achieving high predictive accuracy across two public datasets. The model's underlying feature set is shown to be more predictive than existing feature sets used for device identification, and is shown to generalize to data unseen during the feature selection process. Unlike most existing approaches to IoT device identification, IoTDevID is able to detect devices using non-IP and low-energy protocols

    DroidDissector: A Static and Dynamic Analysis Tool for Android Malware Detection

    Full text link
    DroidDissector is an extraction tool for both static and dynamic features. The aim is to provide Android malware researchers and analysts with an integrated tool that can extract all of the most widely used features in Android malware detection from one location. The static analysis module extracts features from both the manifest file and the source code of the application to obtain a broad array of features that include permissions, API call graphs and opcodes. The dynamic analysis module runs on the latest version of Android and analyses the complete behaviour of an application by tracking the system calls used, network traffic generated, API calls used and log files produced by the application

    Using Epigenetic Networks for the Analysis of Movement Associated with Levodopa Therapy for Parkinson's Disease

    Get PDF
    © 2016 The Author(s) Levodopa is a drug that is commonly used to treat movement disorders associated with Parkinson's disease. Its dosage requires careful monitoring, since the required amount changes over time, and excess dosage can lead to muscle spasms known as levodopa-induced dyskinesia. In this work, we investigate the potential for using epiNet, a novel artificial gene regulatory network, as a classifier for monitoring accelerometry time series data collected from patients undergoing levodopa therapy. We also consider how dynamical analysis of epiNet classifiers and their transitions between different states can highlight clinically useful information which is not available through more conventional data mining techniques. The results show that epiNet is capable of discriminating between different movement patterns which are indicative of either insufficient or excessive levodopa

    Harmonic Versus Chaos Controlled Oscillators in Hexapedal Locomotion

    Get PDF
    The behavioural diversity of chaotic oscillator can be controlled into periodic dynamics and used to model locomotion using central pattern generators. This paper shows how controlled chaotic oscillators may improve the adaptation of the robot locomotion behaviour to terrain uncertainties when compared to nonlinear harmonic oscillators. This is quantitatively assesses by the stability, changes of direction and steadiness of the robotic movements. Our results show that the controlled Wu oscillator promotes the emergence of adaptive locomotion when deterministic sensory feedback is used. They also suggest that the chaotic nature of chaos controlled oscillators increases the expressiveness of pattern generators to explore new locomotion gaits

    Parkinson’s disease diagnosis using convolutional neural networks and figure-copying tasks

    Get PDF
    Parkinson’s disease (PD) is a progressive neurodegenerative disorder that causes abnormal movements and an array of other symptoms. An accurate PD diagnosis can be a challenging task as the signs and symptoms, particularly at an early stage, can be similar to other medical conditions or the physiological changes of normal ageing. This work aims to contribute to the PD diagnosis process by using a convolutional neural network, a type of deep neural network architecture, to differentiate between healthy controls and PD patients. Our approach focuses on discovering deviations in patient’s movements with the use of drawing tasks. In addition, this work explores which of two drawing tasks, wire cube or spiral pentagon, are more effective in the discrimination process. With 93.5%93.5\% accuracy, our convolutional classifier, trained with images of the pentagon drawing task and augmentation techniques, can be used as an objective method to discriminate PD from healthy controls. Our compact model has the potential to be developed into an offline real-time automated single-task diagnostic tool, which can be easily deployed within a clinical setting

    A New Evolutionary Algorithm-Based Home Monitoring Device for Parkinson’s Dyskinesia

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative movement disorder. Although there is no cure, symptomatic treatments are available and can significantly improve quality of life. The motor, or movement, features of PD are caused by reduced production of the neurotransmitter dopamine. Dopamine deficiency is most often treated using dopamine replacement therapy. However, this therapy can itself lead to further motor abnormalities referred to as dyskinesia. Dyskinesia consists of involuntary jerking movements and muscle spasms, which can often be violent. To minimise dyskinesia, it is necessary to accurately titrate the amount of medication given and monitor a patient’s movements. In this paper, we describe a new home monitoring device that allows dyskinesia to be measured as a patient goes about their daily activities, providing information that can assist clinicians when making changes to medication regimens. The device uses a predictive model of dyskinesia that was trained by an evolutionary algorithm, and achieves AUC>0.9 when discriminating clinically significant dyskinesia

    REFORMS: Reporting Standards for Machine Learning Based Science

    Full text link
    Machine learning (ML) methods are proliferating in scientific research. However, the adoption of these methods has been accompanied by failures of validity, reproducibility, and generalizability. These failures can hinder scientific progress, lead to false consensus around invalid claims, and undermine the credibility of ML-based science. ML methods are often applied and fail in similar ways across disciplines. Motivated by this observation, our goal is to provide clear reporting standards for ML-based science. Drawing from an extensive review of past literature, we present the REFORMS checklist (Re\textbf{Re}porting Standards For\textbf{For} M\textbf{M}achine Learning Based S\textbf{S}cience). It consists of 32 questions and a paired set of guidelines. REFORMS was developed based on a consensus of 19 researchers across computer science, data science, mathematics, social sciences, and biomedical sciences. REFORMS can serve as a resource for researchers when designing and implementing a study, for referees when reviewing papers, and for journals when enforcing standards for transparency and reproducibility

    Metaheuristics in nature-inspired algorithms

    No full text
    To many people, the terms nature-inspired algorithm and metaheuristic are interchangeable. However, this contem-porary usage is not consistent with the original meaning of the term metaheuristic, which referred to something closer to a design pattern than to an algorithm. In this paper, it is argued that the loss of focus on true metaheuristics is a pri-mary reason behind the explosion of “novel ” nature-inspired algorithms and the issues this has raised. To address this, this paper attempts to explicitly identify the metaheuristics that are used in conventional optimisation algorithms, dis-cuss whether more recent nature-inspired algorithms have delivered any fundamental new knowledge to the field of metaheuristics, and suggest some guidelines for future re-search in this field
    corecore